65 research outputs found

    Function-Based Rhizosphere Assembly along a Gradient of Desiccation in the Former Aral Sea

    Get PDF
    The desiccation of the Aral Sea represents one of the largest human-made environmental regional disasters. The salt- and toxin-enriched dried-out basin provides a natural laboratory for studying ecosystem functioning and rhizosphere assembly under extreme anthropogenic conditions. Here, we investigated the prokaryotic rhizosphere communities of the native pioneer plant Suaeda acuminata (C.A.Mey.) Moq. in comparison to bulk soil across a gradient of desiccation (5, 10, and 40 years) by metagenome and amplicon sequencing combined with quantitative PCR (qPCR) analyses. The rhizosphere effect was evident due to significantly higher bacterial abundances but less diversity in the rhizosphere compared to bulk soil. Interestingly, in the highest salinity (5 years of desiccation), rhizosphere functions were mainly provided by archaeal communities. Along the desiccation gradient, we observed a significant change in the rhizosphere microbiota, which was reflected by (i) a decreasing archaeon-bacterium ratio, (ii) replacement of halophilic archaea by specific plant-associated bacteria, i.e., Alphaproteobacteria and Actinobacteria, and (iii) an adaptation of specific, potentially plant-beneficial biosynthetic pathways. In general, both bacteria and archaea were found to be involved in carbon cycling and fixation, as well as methane and nitrogen metabolism. Analysis of metagenome-assembled genomes (MAGs) showed specific signatures for production of osmoprotectants, assimilatory nitrate reduction, and transport system induction. Our results provide evidence that rhizosphere assembly by cofiltering specific taxa with distinct traits is a mechanism which allows plants to thrive under extreme conditions. Overall, our findings highlight a function-based rhizosphere assembly, the importance of plant-microbe interactions in salinated soils, and their exploitation potential for ecosystem restoration approaches

    Fusaricidins, Polymyxins and Volatiles Produced by Paenibacillus polymyxa Strains DSM 32871 and M1

    Get PDF
    Paenibacilli are efficient producers of potent agents against bacterial and fungal pathogens, which are of great interest both for therapeutic applications in medicine as well as in agrobiotechnology. Lipopeptides produced by such organisms play a major role in their potential to inactivate pathogens. In this work we investigated two lipopeptide complexes, the fusaricidins and the polymyxins, produced by Paenibacillus polymyxa strains DSM 32871 and M1 by MALDI-TOF mass spectrometry. The fusaricidins show potent antifungal activities and are distinguished by an unusual variability. For strain DSM 32871 we identified numerous yet unknown variants mass spectrometrically. DSM 32871 produces polymyxins of type E (colistins), while M1 forms polymyxins P. For both strains, novel but not yet completely characterized polymyxin species were detected, which possibly are glycosylated. These compounds may be of interest therapeutically, because polymyxins have gained increasing attention as last-resort antibiotics against multiresistant pathogenic Gram-negative bacteria. In addition, the volatilomes of DSM 32781 and M1 were investigated with a GC–MS approach using different cultivation media. Production of volatile organic compounds (VOCs) was strain and medium dependent. In particular, strain M1 manifested as an efficient VOC-producer that exhibited formation of 25 volatiles in total. A characteristic feature of Paenibacilli is the formation of volatile pyrazine derivatives.Peer Reviewe

    GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases

    Get PDF
    Most convolutional neural network (CNN) models have various difficulties in identifying crop diseases owing to morphological and physiological changes in crop tissues, and cells. Furthermore, a single crop disease can show different symptoms. Usually, the differences in symptoms between early crop disease and late crop disease stages include the area of disease and color of disease. This also poses additional difficulties for CNN models. Here, we propose a lightweight CNN model called GrapeNet for the identification of different symptom stages for specific grape diseases. The main components of GrapeNet are residual blocks, residual feature fusion blocks (RFFBs), and convolution block attention modules. The residual blocks are used to deepen the network depth and extract rich features. To alleviate the CNN performance degradation associated with a large number of hidden layers, we designed an RFFB module based on the residual block. It fuses the average pooled feature map before the residual block input and the high-dimensional feature maps after the residual block output by a concatenation operation, thereby achieving feature fusion at different depths. In addition, the convolutional block attention module (CBAM) is introduced after each RFFB module to extract valid disease information. The obtained results show that the identification accuracy was determined as 82.99%, 84.01%, 82.74%, 84.77%, 80.96%, 82.74%, 80.96%, 83.76%, and 86.29% for GoogLeNet, Vgg16, ResNet34, DenseNet121, MobileNetV2, MobileNetV3_large, ShuffleNetV2_Ă—1.0, EfficientNetV2_s, and GrapeNet. The GrapeNet model achieved the best classification performance when compared with other classical models. The total number of parameters of the GrapeNet model only included 2.15 million. Compared with DenseNet121, which has the highest accuracy among classical network models, the number of parameters of GrapeNet was reduced by 4.81 million, thereby reducing the training time of GrapeNet by about two times compared with that of DenseNet121. Moreover, the visualization results of Grad-cam indicate that the introduction of CBAM can emphasize disease information and suppress irrelevant information. The overall results suggest that the GrapeNet model is useful for the automatic identification of grape leaf diseases

    Exploration of phyllosphere microbiomes in wheat varieties with differing aphid resistance

    Get PDF
    Background: Leaf-associated microbes play an important role in plant development and response to exogenous stress. Insect herbivores are known to alter the phyllosphere microbiome. However, whether the host plant’s defense against insects is related to the phyllosphere microbiome remains mostly elusive. Here, we investigated bacterial communities in the phyllosphere and endosphere of eight wheat cultivars with differing aphid resistance, grown in the same farmland. Results: The bacterial community in both the phyllosphere and endosphere showed significant differences among most wheat cultivars. The phyllosphere was connected to more complex and stable microbial networks than the endosphere in most wheat cultivars. Moreover, the genera Pantoea, Massilia, and Pseudomonas were found to play a major role in shaping the microbial community in the wheat phyllosphere. Additionally, wheat plants showed phenotype-specific associations with the genera Massilia and Pseudomonas. The abundance of the genus Exiguobacterium in the phyllosphere exhibited a significant negative correlation with the aphid hazard grade in the wheat plants. Conclusion: Communities of leaf-associated microbes in wheat plants were mainly driven by the host genotype. Members of the genus Exiguobacterium may have adverse effects on wheat aphids. Our findings provide new clues supporting the development of aphid control strategies based on phyllosphere microbiome engineering
    • …
    corecore